Wiki:wave plate (波板/半波板) 偏極化入射光- 我剛翻譯的

波板

From Wikipedia, the free encyclopedia
 
 

半波板:

能將入射光,極化為兩道平行(綠)與垂直(藍)於光軸的波。
相對於垂直於光軸的光波,平行於光軸的光波在波板中的傳遞是較慢的,
這導致光波在波板的終端,平行於光軸的光波,與垂直於光軸的光波,有半個波長這樣距離上的延遲,
並使最終合併在一起的光波(紅),與入射光呈現垂直偏極化的結果。

 

波板(或 retarder)是一種可改變入射光極化方向的光學元件。

運作

藉由偏移光波中兩兩互相垂直的極化光分量的相位,是波板的主要運作方式。 典型的波板,是由簡單的雙折射晶體組成,其晶體則需經嚴格的挑選,包括厚度與方向性,都要被納人比較。晶體被切割以使得光軸平行於波板的表面。被偏極過、兩兩互相垂直的偏極光,以不同的速度通過晶格,並產生相位差。當 extraordinary index 比 ordinary index 小(像是方解石中),extraordinary axis 被稱為”快軸”,而垂直其方向的平面,則稱為”慢軸”。隨著晶體厚度的不同,延著兩兩互相垂直方向的光極化分量,最後會顯現成為不同的極化態。

沿慢軸偏振光稱為 ordinary light,沿快軸偏振光稱為 extraordinary light。

波板根據相對相位數(the amount of relative phase) \Gamma 來區分,並有著如下的關係式:

\Gamma = \frac{2 \pi\, \Delta n\, L}{\lambda_0}

其中, \lambda_0 為光在真空中的波長,△n 為雙折射率,L 為晶體的厚度。舉四分波板為例,它能將入射光極化為兩軸相位差為 1/4 波長的極化光分量,並可將線極化光,偏極化成為圓極化光,或是將圓極化光,偏極化為線極化光,這可透過調整線偏極光入射角與快軸成45°角的方式來達成。此時,ordinary wave(沿慢軸) 與 extraordinary wave(沿快軸) 具有同樣的振幅。

另一種常見的波板為半波板,其功能為減少極化上半波長的距離,或是 180°角。這類型的波板改變線偏極光的極化方向。一般而言,波板正如極化器,能被 Jones Matrix Formalism 描述,使用一向量去代表光的偏極化態,並利用一矩陣去代表線偏極光在波板或極化器中的傳輸。

雖然雙折射參數 △n 會因色散的關係有些微變動,在光程固定、光波長固定情況下的相位誤差比較之下,是可以忽略不計的(在關係式中,\lambda_0為分母)。也因此,依適用波長的不同,波板被製作成為不同的產品。以慢軸沿著快軸的方向,藉由疊合兩片厚度差異極小的波板,相位誤差可以被最小化。舉四分波板為例,透過這樣的設計,相應的相位誤差可以降到 1/4 波長,而不是 3/4、或 5/4 波長,這樣的波板被稱為 Zero-Order 波板。

For a single wave plate changing the wavelength of the light introduces a linear error in the phase. Tilt of the wave plate enters via a factor of 1/\cos \theta (where \theta is the angle of tilt) into the path length and thus only quadratically into the phase. For the extraordinary polarization the tilt also changes the refractive index to the ordinary via a factor of \cos\theta, so combined with the path length, the phase shift for the extraordinary light due to tilt is zero.

A polarization independent phase shift of zero order needs a plate with thickness of one wavelength. For Calcite the refractive index changes in the first decimal place, so that a true zero order plate is ten times as thick as one wavelength. For quartz and magnesium fluoride the refractive index changes in the second decimal place and true zero order plates are common for wave-lengths above 1 µm.

 

翻譯自 Wiki 原文:http://en.wikipedia.org/wiki/Wave_plate

Wiki:DPSS Laser - 我剛翻譯的

DPSS Laser(Diode-pumped Solid-State Laser)

Diode-pumped Solid-State (DPSS) laser 是一種透過 pump 一固態增益材料的方式產生的固態雷射。例如,以紅寶石、釹雅鉻晶體作為增益材料,透過雷射二極體而成的 Ruby Laser(紅寶石雷射)、Nd-Yag Laser(釹雅鉻雷射)。

  

相較於其他類型的雷射,DPSS 雷射具有小巧及高轉換效率的優勢,且具有高功率的 DPSS 雷射,在許多科學應用的領域上,已經取代離子雷射、Flashlamp-pumped 雷射。目前簡報會議中常見的 laser pointer 亦是 DPSS 雷射的一種,這類雷射為綠色或其他顏色。

 

耦合(Coupling)

藉由調整 Laser Diode 的溫度,使雷射晶體在吸收係數與放射能量效率上達到理想的比例,並可測得此穩定參數下、雷射的波長。

高功率雷射只需使用單一的晶體,但很多 Laser Diode 被以類似串聯或並聯的方式排列著,這個方式可以達到晶體成像的透鏡效果。藉由實驗、調整的方式,決定 Laser Diode 之間最佳的黑暗區域,達到高亮度(意味著 – 更好的雷射能量分佈、更長的使用壽命)的目的。這還需要能夠精準控制溫度的散熱系統、提供穩定且精確的電流。大致上來說,可以由兩個步驟完成:

1. fast axis 由一預先校正準直過的柱狀微透鏡去調整其準直性。

2. 此時經由校準過、進入晶體中的光束,可由晶體縱向的前後兩端、或晶體橫向的三面以上的方向,將晶體激發出雷射。

經由上述兩個步驟,光束在穿過晶體陣列之後產生的雷射,可以被耦合進光纖(fiber)中,當然,這光纖事先被精準且正確地放置於光路中(在 Laser Diode 和後面的微透鏡之間)。

雷射耦合到光纖中、通過光纖後,在光纖的末端(遠離雷射的方向),形成一束 profile 為良好的圓形、無間隙、標準的雷射。

常見的 DPSS 雷射的流程


最常見的 DPSS 雷射是波長為 532nm 的 Green 雷射。由功率大於 200mW、波長為 808nm 的高能 Laser Diode 去激發 Nd:Yag 或 Nd:YVO4 晶體,進而由上述晶體產生出波長為 1064nm 的雷射光束。接下來,1064nm 的雷射光束,通過 KTP 晶體(非線性的光學轉換過程),倍頻成為 532nm 的雷射。

Green DPSS 雷射的轉換效率大約為 20%,有些雷射的轉換效率可高達 35%。也就是說,若以 2.5W 的 Laser Diode 能量去 pump KTP 倍頻器,理想上,我們預期能產生出 500~900 mW 、波長為 532nm 雷射。

在理想情況下,Nd:YVO4 的轉換效率為 60%,同時 KTP 的轉換效率為 80%。也就是說,理論上,Green DPSS Laser 的整體轉換效率為 48%。
實際上,在輸出功率相當高的情況下,倍頻晶體相當容易受損。因此,高功率 DPSS Laser 通常設計成具有較大的光束直徑,讓光束在到達 KTP 之前擴散開來,減少 IR 對於晶體的損傷。若是希望維持光束直徑較小的特性,可採用如 LBO 這種損傷閥值較高(需要 IR 的能量較高時才會受損)的晶體取代。

藍光 DPSS Laser 的產生流程幾乎與上述相同,入射的(波長為) 808nm 的光束被 Nd:YAG 晶體轉換為波長為 946nm 的雷射(此 Nd:YAG 晶體與前述晶體特性不同),然後 946nm 雷射再被倍頻器(此時倍頻器改為 BBO 或 LBO)倍頻為波長 473nm 的雷射。由於增益材料的低增益特性,藍光雷射的能量相對較低,整體轉換效率只有 3~5% 而已。在 2000 年代後期,研究者發現 BiBO 晶體的轉換效率比 BBO 或 LBO 的效率還高,而且沒有後者容易受潮的缺點。

波長為 404nm 的紫光 DPSS Laser則可直接被產生出來,以 1000mW 的 808nm 去 pump,可產生 120mW 的紫光雷射出來(轉換效率為 12%)。

These lasers out-perform 50 mW gallium nitride (GaN) direct 405 nm Blu-ray diode lasers, but the frequency-doubled violet lasers also have a considerable infrared component in the beam, resulting from the pump diode.

黃光 DPSS Laser 的產生流程相當複雜:由波長為 808nm 的 Laser Diode 產生波長為 1064nm 及 1342nm 的光,然後疊加(混波)這兩道光、變成一道波長為 593.5nm 的雷射光。由於複雜的特性,大部分的黃光 DPSS 雷射只有約 1% 的轉換效率,而且平均每單位功率的價格,遠比其他雷射還要昂貴。

另一個產光黃光 DPSS Laser 的方法,是先產生波長為 1064nm 與 1319nm 雷射,再疊加(混波)成為波長為 589nm 的雷射。這個方式較有效率,整體的轉換效率提升到 3%。

 

與 Diode Laser 的比較


DPSS 和 Diode Laser 是兩種相當常用的固態雷射,然而,這兩種雷射各有其優缺點。

一般而言,DPSS Laser 的光束品質(profile)較佳,在兼顧光束品質良好的前提下,還是能產出功率相當高的雷射。由於 pump 晶體的方式,pump 出來的雷射品質與入射於晶體的光束,是彼此獨立的。相較之言,除非以多模的方式產出雷射(multi-mode laser),一般而言 Diode 雷射最多只能產出數百 mW 功率的雷射光。然而,多模的雷射光(multi-mode laser)的雷射直徑通常較大,且衰減相當快,這樣的雷射特性是較不理想的。事實上,單模(single-mode)的方式,在一些實務上的應用,是必要的規格,例如 Optical Drive。

從另一個角度來說,Diode Laser 通常比 DPSS Laser 便宜,且雷射轉換效率較高。如上述所言,DPSS 晶體的轉換效率低於 100%,在雷射光束被轉換(倍頻)時,雷射的功率會下降。

另外,DPSS 雷射對於溫度的穩定性相當敏感,而且需要相當理想的工作環境及條件 – DPSS 雷射只能在範圍極小的調整參數下,產出預期的波長及功率的雷射。因此,DPSS 雷射常有不穩定的問題,例如模態的跳躍(?)及功率的不穩定性(功率數值跳動很大)。DPSS 雷射在生產上也需要較複雜的流程。

另一項 Diode 雷射的優點:藉由精確的調整,Diode 雷射能產出比 DPSS 雷射更高頻(波長更短)的雷射。這是 DPSS 雷射無法達到的。

 

Reference:由本人陳建利翻譯自 Wiki:http://en.wikipedia.org/wiki/Diode-pumped_solid-state_laser,轉載請註明出處。

準分子雷射與眼科雷射

「重塑角膜」的手術,為什麼要用上準分子雷射呢?

因為它的特性在於對人體組織的穿透性極小,能夠將對組織的傷害減到最低,

卻又可以精確削去組織表層,達成修整眼角膜的目的。


眼睛,其實是一部極為纖細精密的光學儀器,只要有一點點的損傷,都可能造成重大的傷害,

而準分子雷射的特性便在於它可以在很短時間內削除非常薄的角膜表層,

卻又幾乎不會造成鄰近組織的損傷,

所以產生的瘢痕極為細小,而且也不會造成角膜強度的改變。

Wiki:Q-switch-我剛翻譯的

 

Q-switch (Q switch,Q-switching)

Q-switching,以具有「大能量的脈衝」聞名,是一項能產生脈衝式雷射的科技。這項科技能讓雷射釋出相當高(Giga
Watt
)能量峰值的
脈衝光。以 Q-switch 觸發的雷射,具有遠比以 CW(連續波)觸發的方式還要高的能量。相較於另一項脈衝雷射的新科技(mode
locking
)比較,Q-switch 型的雷射為頻率較低、單脈衝能量較高的特性,脈衝長度也較長。這兩項科技,有時候會同時被應用在某些用途上。

 

Q-switching 技術於 1958 年,由 Gordon
Gould
首度提出,並由 R.W.
Hellwarth
F.J. McClung 1961 年(或 1962 年)建立,並在 Ruby 雷射中,以electrically switched Kerr cell
shutters
(電子式切換 Kerr cell 快門?)證實。

 

Q-switching的原理:

Q-switching 的效果可由放入可變衰減器到雷射共振腔中達成。當衰減器被啟用時,由增益材料(可被激發並釋出光線的材料)被激發出來的光線並不會被反射回去(故雷射此時尚無法開始擊發)。在共振腔中放入衰減器,等同於降低 Q-factorquality factor of the optical resonator)數值的效果。當 Q-factor 值越高時,代表光線在共振腔中每次來回共振的損失越低,反之則是損失增加。而用於這個用途的「可變衰減器」,正是我們常聽到的「Q-switch」。

 

首先,供激發的雷射材料被激發出光線,而在其後的 Q-switch 則使傳遞過來的光線無法反射回雷射材料(這種情況,等效於製造一個 Q-factor 較低的共振腔)。雖然這樣會促成群數反轉效應,但由於光線仍然留在 Q-switch 裡,尚未反射回雷射材料,故雷射尚未開始擊發。由於雷射的擊發頻率取決於進入雷射材料的光線量,當雷射材料被氙燈(即 Q-switch Laser 中常見的 Lamp)pumping 時,儲存在增益材料中的能量不斷上升。由於自發性發射光線或其他程序的損失,在一段時間之後,儲存在增益材料中的能量會達到某個臨界高點(我們說這項材料已經飽和了),此時,Q-switch 元件會很快地由低 Q-factor 轉變為高 Q-factor,使得光線得以射回雷射材料,雷射此時已啟動並開始擊發。由於儲存在增益材料中的能量相當高的緣故,光線的能量在共振腔中能極快地提昇(這也使儲存在增益材料中的能量急速耗盡)。整體上,我們在外部看到的結果是一束能量密度相當高的雷射光束被擊發出雷射腔。

 

Q-switching主要有兩種類型:

主動式
Q-switching

在這裡,Q-switch 是一個由外部控制、Q-factor 可變的衰減器。我們能利用機械性裝置(如在共振腔中擺放shutterchopper wheelspinning mirror),或是利用某種調節器(如聲光或光電元件)達成效果-如 Pockels
cell
Kerr cell。能量損失率的降低(或是 Q-factor 的升高)由外部事件觸發;一般而言,是以電子訊號觸發。也因此,雷射脈波的擊發頻率可以由此控制。

 

一般來說,這種調節器具有快速地由低的 Q-factor 轉換為高 Q-factor 的功能,並提供良好的控制。額外的優點是:被拒絕的光線也許會因為被耦合而釋出共振腔,這項優點可以被應用在其他用途。當 Q-switch 處於低 Q-factor 的狀態時,一個由外部產生的光束能夠被耦合併穿透調節器、進入共振腔。這可以拿來在共振腔中「播種」。只要我們由外部打入具有我們要求性質的光束(如反轉模態或某種波長),當 Q-factor 被急速提昇時,由雷射釋出的 Q-switched 脈衝光,將繼承我們播入種子的特性。

 

被動式 Q-switching

在這種類型中,Q-switch 是一個可飽和的吸收器,它是一種只要能量密度被提昇到超過到某種臨界值時,穿透率會提昇的材質。這種材料也許是 ion-doped 晶體,如CrYAG(用於 Nd-YAG 雷射),一種可褪色的染料,或是被動式半導體元件。在一開始,吸收器的能量損失率雖然頗高,但相對低於儲存在增益材料中的能量,它允許能量穿透吸收器。例如:當雷射的功率提高時,吸收器開始飽和,並且很快地減少共振腔中能量的損失率,故雷射的功率能更快地被提高。觀念上,這將使吸收器轉至低能量損失率的狀態,以允許由雷射材料中激發出的光線儲存的能量被解放。在這一個脈衝波之後,吸收器還原至高損失率的狀態,直到吸收器被再度充滿飽和後,才會有另一個脈衝波被擊發。脈衝擊發的頻率可以被直接控制,例如:透過改變雷射的 pumping 功率及腔體內吸收器的數目。我們也可以像被動式 Q-switching 一樣,由脈衝式的雷射 pump 源來控制功率。

 

差異:略。

 

Typical
performance

標準的 Q-switched 雷射(如 NdYAG 雷射),具有例如 10 cm 長的共振腔,可以產生脈衝長度為數十 ns 的脈衝光。甚至平均功率在1 W 以下,脈衝光功率的峰值可高達數千瓦。大型雷射系統則可以產生數焦耳的 Q-switched 脈衝光,以及高達數Giga-watt的功率峰值。另外,被動式的 Q-switched 微型雷射(共振腔非常小)可產生 duration 遠小於1 ns、頻率由數百甚至數 MHz 的脈衝光。

 

應用:

Q-switched 雷射常被應用於在 duration 為數 ns 尺度下的脈衝光,就具有高雷射能量密度的需求上,像是金屬切割或是脈衝型全像術。非線性光學常利用其高功率峰值的特性,提供像是 3D 光學資料儲存或是 3D 微處製程上。Q-switched 雷射也常被使用於測量的用途,例如利用測量脈衝光在雷射及目標物間往返的時間,達到測量距離的目的。

 

Q-switched 雷射也被用於移除刺青。它被用於破壞刺青的顏料,使顏料被破壞到身體的淋巴系統可以排泄掉的粒子型態。平均上,完全去除刺青需要八個療程,至少需要一個月的時間,利用不同波長的雷射去除不同顏料的刺青。

 

 

Reference:翻譯自 Wiki:http://en.wikipedia.org/wiki/Q-switching

2010/12/14 增修翻譯不佳的內容及排版。

Q-Switch Laser

Q-switching

 

From Wikipedia, the free encyclopedia

 

Q-switching, sometimes known as giant pulse formation, is a technique by which a laser can be made to produce a pulsed output beam. The technique allows the production of light pulses with extremely high (gigawatt) peak power, much higher than would be produced by the same laser if it were operating in a continuous wave (constant output) mode. Compared to modelocking, another technique for pulse generation with lasers, Q-switching leads to much lower pulse repetition rates, much higher pulse energies, and much longer pulse durations. Both techniques are sometimes applied at once .

 

Q-switching was first proposed in 1958 by Gordon Gould, and independently discovered and demonstrated in 1961 or 1962 by R.W. Hellwarth and F.J. McClung using electrically switched Kerr cell shutters in a ruby laser.

 

Principle of Q-switching

 

Q-switching is achieved by putting some type of variable attenuator inside the laser’s optical resonator. When the attenuator is functioning, light which leaves the gain medium does not return, and lasing cannot begin. This attenuation inside the cavity corresponds to a decrease in the Q factor or quality factor of the optical resonator. A high Q factor corresponds to low resonator losses per roundtrip, and vice versa. The variable attenuator is commonly called a “Q-switch”, when used for this purpose.

 

Initially the laser medium is pumped while the Q-switch is set to prevent feedback of light into the gain medium (producing an optical resonator with low Q). This produces a population inversion, but laser operation cannot yet occur since there is no feedback from the resonator. Since the rate of stimulated emission is dependent on the amount of light entering the medium, the amount of energy stored in the gain medium increases as the medium is pumped. Due to losses from spontaneous emission and other processes, after a certain time the stored energy will reach some maximum level; the medium is said to be gain saturated. At this point, the Q-switch device is quickly changed from low to high Q, allowing feedback and the process of optical amplification by stimulated emission to begin. Because of the large amount of energy already stored in the gain medium, the intensity of light in the laser resonator builds up very quickly; this also causes the energy stored in the medium to be depleted almost as quickly. The net result is a short pulse of light output from the laser, known as a giant pulse, which may have a very high peak intensity.

 

There are two main types of Q-switching:

 

Active Q-switching

 

Here, the Q-switch is an externally-controlled variable attenuator. This may be a mechanical device such as a shutter, chopper wheel or spinning mirror placed inside the cavity, or (more commonly) it may be some form of modulator such as an acousto-optic device or an electro-optic device — a Pockels cell or Kerr cell. The reduction of losses (increase of Q) is triggered by an external event, typically an electrical signal. The pulse repetition rate can therefore be externally controlled.

 

Modulators generally allow a faster transition from low to high Q, and provide better control. An additional advantage of modulators is that the rejected light may be coupled out of the cavity and can be used for something else. Alternatively, when the modulator is in its low-Q state, an externally-generated beam can be coupled into the cavity through the modulator. This can be used to “seed” the cavity with a beam that has desired characteristics (such as transverse mode or wavelength). When the Q is raised, lasing builds up from the initial seed, producing a Q-switched pulse that has characteristics inherited from the seed.

 

Passive Q-switching

 

In this case, the Q-switch is a saturable absorber, a material whose transmission increases when the intensity of light exceeds some threshold. The material may be an ion-doped crystal like Cr:YAG, which is used for Q-switching of Nd:YAG lasers, a bleachable dye, or a passive semiconductor device. Initially, the loss of the absorber is high, but still low enough to permit some lasing once a large amount of energy is stored in the gain medium. As the laser power increases, it saturates the absorber, i.e., rapidly reduces the resonator loss, so that the power can increase even faster. Ideally, this brings the absorber into a state with low losses to allow efficient extraction of the stored energy by the laser pulse. After the pulse, the absorber recovers to its high-loss state before the gain recovers, so that the next pulse is delayed until the energy in the gain medium is fully replenished. The pulse repetition rate can only indirectly be controlled, e.g. by varying the laser’s pump power and the amount of saturable absorber in the cavity. Direct control of the repetition rate can be achieved by using a pulsed pump source as well as passive Q-switching.

 

Variants

    • Jitter can be reduced by not reducing the Q by as much, so that a small amount of light can still circulate in the cavity. This provides a “seed” of light that can aid in the buildup of the next Q-switched pulse.


    • Cavity dumping: The cavity end mirrors are 100% reflective, so that no output beam is produced when the Q is high. Instead, the Q-switch is used to “dump” the beam out of the cavity after a time delay. The cavity Q goes from low to high to start the laser buildup, and then goes from high to low to “dump” the beam from the cavity all at once. This produces a shorter output pulse than regular Q-switching. Electro-optic modulators are normally used for this, since they can easily be made to function as a near-perfect beam “switch” to couple the beam out of the cavity. The modulator that dumps the beam may be the same modulator that Q-switches the cavity, or a second (possibly identical) modulator. A dumped cavity is more complicated to align than simple Q-switching, and may need a control loop to choose the best time at which to dump the beam from the cavity.


    • Regenerative amplification: In regenerative amplification, an optical amplifier is placed inside a Q-switched cavity. Pulses of light from another laser (the “master oscillator”) are injected into the cavity by lowering the Q to allow the pulse to enter and then increasing the Q to confine the pulse to the cavity where it can be amplified by repeated passes through the gain medium. The pulse is then allowed to leave the cavity via another Q switch.

Typical performance

 

A typical Q-switched laser (e.g. a Nd:YAG laser) with a resonator length of e.g. 10 cm can produce light pulses of several tens of nanoseconds duration. Even when the average power is well below 1 W, the peak power can be many kilowatts. Large-scale laser systems can produce Q-switched pulses with energies of many joules and peak powers in the gigawatt region. On the other hand, passively Q-switched microchip lasers (with very short resonators) have generated pulses with durations far below one nanosecond and pulse repetition rates from hundreds of hertz to several megahertz (MHz)

 

Applications

 

Q-switched lasers are often used in applications which demand high laser intensities in nanosecond pulses, such metal cutting or pulsed holography. Nonlinear optics often takes advantage of the high peak powers of these lasers, offering applications such as 3D optical data storage and 3D microfabrication. However, Q-switched lasers can also be used for measurement purposes, such as for distance measurements (range finding) by measuring the time it takes for the pulse to get to some target and the reflected light to get back to the sender.

 

Q-switched lasers are used to remove tattoos. They are used to shatter tattoo pigment into particles that are cleared by the body’s lymphatic system. Full removal takes an average of eight treatments, spaced at least a month apart, using different lasers for different colored inks.